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ANALYTIC DESCRIPTION OF BINARY MELT CRYSTALLIZATION 

T. A. Cherepanova UI)C 536.42+536.421+518.517 

In [i, 2] an approach was developed for the analytic description of the crystallization 
of binary systems. Diffusion processes at the interphase boundary were assumed to occur so 
intensely that the concentration in the melt was independent of the local phase-boundary con- 
figuration. Such an approximation is physically justifiable if the crystallization process 
is limited to its kinetic stage. In the case where the characteristic rate of diffusion mass 
transfer in the concentrationboundary layer is less than the maximum possible growth rate 
at specified temperature values and specified component concentrations in the melt core, we 
must consider the crystallization process in a diffusion regime. The growth rate and struc- 
tural characteristics of the interphase zone are then determined by diffusion mass transfer 
to the phase boundary and the value of the concentration gradient which develops near the 
boundary. 

The purpose of the present study is an analytic description of the crystallization of 
binary melts with consideration of diffusion in the melt. With a microscopic examination of 
the kinetics of elementary process we will obtain a system of finite-difference equations for 
the diffusion boundary layer near the surface of the growing crystal faces. 

We will consider a lattice model of the binary crystal--melt system. We assume that 
atoms of the u and 8 components are located at lattice points and belong to either the liquid 
or solid phase. At each lattice point there is located only one such particle, the total 
number of which is equal to N. Interaction within the system will be described by the values 

of the effective binding energies of the most closely neighboring solid particles ~, ~i~, 

~11; of solid particles with liquid particles ~,o  , ~zo,  ~ , o '  ~ o , ,  and of liquid particles ~oo, 

~8 88 (the subscript 0 denotes the liquid phase, while the subscript 1 denotes the solid ~oo, ~oo 
phase). As in [1, 2], the configuration of the distribution of atoms over the system is 

- -I~'l, where ~j = i if at the j-th lattice point a solid specified by a set of parameters g= NJ 

particle exists and qj = 0 if a liquid particle is present; ~j defines the type of particle 
at this point (~j = ~, 8). We denote by p(g, t) the probability of finding the system at 
time t in a state with configuration g. The time evolution of the distribution function 
p(g, t) in our model is the result of completion of ~ementary events of transition of liquid 

Riga. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskol Fiziki, No. 6, pp. 
96-104, November-December, 1978. Original article submitted December 27, 1977. 
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particles into the solid state, of solid particles into the liquid state, and of diffusion 
exchanges of place between pairs of adjacent particles. The characteristic time of the 
process r is chosen sufficiently small so that over its course no more than one elementary 

act can occur. 

We write the kinetic equation for p (g, t) in the form 

Ot 

= ~ w ~ , �9 n~n, p ( ~ '  ~ ;  " '"  ~*' ~ ;  ~j' q j; " '"  ~x' ~N; t) + 

�9 . lJ, ~i, ~h; ~N, ~ly; - -  

r  ' where  Whirl i i s  t h e  f r e q u e n c y  o f  t r a n s i t i o n  o f  a ~i p a r t i c l e  a t  t he  i - t h  l a t t i c e  p o i n t  f rom 

W ~ i q i  i s  t he  f r e q u e n c y  of  d i f f u s i o n  exchange  of  p l a c e  o f  a ~j p a r t i -  a p h a s e  s t a t e  rli t o  rli; ~j~j 

c l e  l o c a t e d  a t  t h e  i - t h  p o i n t  i n  a phase  s t a t e  rl i w i t h  a p a r t i c l e  o f  t h e  t y p e  ~j l o c a t e d  a t  
t h e  j - t h  p o i n t  i n  a p h a s e  s t a t e  q j .  Summation i n  Eq. (1) i s  p e r f o r m e d  o v e r  a l l  n e i g h b o r s ,  
a d j a c e n t  t o  t h e  p o i n t  i ,  j ( j  ~ i ) ,  o v e r  a l l  l a t t i c e  p o i n t s  i ,  and o v e r  t h e  p h a s e  s t a t e s  r~ i .  
The first two terms in Eq. (i) describe the probability of transitions of some configuration 
of particle distribution in the system by the performance of a single elementary act into a 
configuration g = (~I, n~; ... ~i, qi; ~j, nj; ... ~N, nN), while the last two terms are the 
probability of reverse transitions over a characteristic time ~. 

The condition of detailed equilibrium allows us to express the ratio of the transition 
frequencies in terms of equilibrium distribution functions. We denote by f ~i, ~i; ~j, nj)_ 
the probability of observation in the equilibrium state of a system with configuration g, the 

i-th point of which corresponds to the parameter (~I, and the j-th point (j~i)of which 
\ r l  7~. 

to the parameter(~'J] . ~ ~ FromEq. (i)we have corresponds 
\ ~  ] j, 

W ~i TXT~s 

w~, ~ - ~ (~,  , ; ;  ~ ,  n,) ' w ~ - ] (~r n,; ~i, n~)" ( 2 )  
ni3i ~jn~ 

~i ' ~iqi To determine the explicit form of the functions Wqiqi , W~jqj from the local configuration of 

particle distribution, we consider that at equilibrium 

�9 . ... f (St n,, ~, n~) _ exp [-- H (~, n~; ... ~,, n,, ~, n~, ~v, nx)/kT] 

(~,, n~; ~j, n~) - e~p [- n(~, n~; ... ~,, n~; ~,, ~,; ... ~,n~)/~T)' 
/ (~,, hi; ~, n~) exp [--s(~. n~; ..- ~,, ~,; ~, n~; :.. ~N' n~)/kT] 
/ (~, n~; ~,, n,) exp [--H (~, n~; ... ~, n~; ~, n,; -.. ~, n~)/~T]" 

The thermodynamic potential of the system ~) plays the role of the Hamiltonian H(g) for the 
order field g, and H(g) may be represented in the form 

H(g)  =: ~ ] N ~ n  + Za 100~i0 -l- . ,~  - "  nn'~n~' + TS, (4 )  
u v 'q,Tl' 

~~ 
where Hq is the chemical potential of the ~ure v component located in the phase state rl; Nq 
is the total number of v -- q particles; N ~, is the number of bonds between closest neighbors 

nn 
of types ~ and ~ belonging to phase states q and q'. respectively; and mv~, is the heat of qq 

( vv ~,q,). The last term in Eq. (~)_ describTes mixing of the components ~v~, = v~ -- 1/2 + 
nn nn. ~n_n 

the configuration component of the system entropy. If we do not consider diffusion processes 
in the solid phase, assuming that their characteristic times are much greater than those con- 
nected with growth rate and diffusion in the liquid phase, the configuration component of the 

787 



entropy will be equal to the entropy of mixing of the melt. In the single-particle approxi- 
mation (condition of complete miscibility) 

s = ~ l n  4 + No ~ In cot (5) 

No~/N is the concentration of a particles in the melt and N is the total number of where co = 
particles in the system. We define the chemical potentials of the solid and liquid phase 
components as the mean change over the ensemble of the Hamiltonian in the phase-transition 
process, 

> 
~ -- N~o, ~ ,  ~o (6) 

' 0H 

W i t h  c o n s i d e r a t i o n  o f  Eq. (6 ) ' ,  

_~ " , - -  H ( N o ,  N~,No,  N]')> (~=/=v). A~ v V ~ o - - p i : < H ( N ~ o , N ] , N ~ o +  I N~i 1 ) - -  ~ ~ " 

In the case of growth of stable crystalline faces in a stationary regime, Ap v has the sense 
of the difference between the chemical potentials of the volume phases, since the mean change 
in surface energy 

<A~z ~u~f> = ( ' A  {~ N~b)~h\  = o. (7) 

As a r e s u l t ,  u s i n g  Eqs .  ( 4 ) ,  ( 6 ) ,  a n d  ( 7 ) ,  we h a v e  

..,~...ap ^ . v . . ~ .  <(OS/ONVo) (OS/ON~)>. A ~  v : A ~  v .-~ [OtuO0 - -  y i w l t  ~ -  T 

Here yq is the q-phase structural factor, describing the degree of its close order: 

In the approximation (5), we obtain the usual expression for the difference between the chem- 

ical potentials : 

A ~  ~ = A ~  ~ + ~o , -oo  - 

~ ~7~--T (8). 
A~ v - -  - v  T ' kT eq 

~v : (~/2)(r q~za) is the heat of transition of the where Teq is the fusion temperature; L~ ~ "9'0 
pure 9 component; and ~ is the coordination number. In the case of crystallization from 
solutions, a different form of Eq. r will be more convenient: 

according to which supersaturation of the system (the moving force of the crystallization 
process A~ 9) is equal togthe sum of the supersaturation of the liquid A~ and solid A~, 9 
phases. The parameter y, then characterizes the degree of supersaturation of the crystal 
related to disordering of its structure in the growth process. 

Considering Eqs. (3) and (4), instead of Eq. (2) we obtain 

1 X l; ( 9 )  
V,ll" 

w~~ [ ~ o  _ ~ ( ~ ,  o; ~ ,  o) (~ - i - ~ (%0 + r - 2%o) _ 
W ~'~ / (Pi' O; %, O) = e x p  l~ - -  ~~ ~ ~t~ ~ 

I~ o 

z~ ( 4 7 + ~ P  ~ ~ "vO0 - -  "rOt - -  "vOO] �9 +i k'vOt ~ "vO0 q)Ot - -  

kT kT 

I , jP /  ~ " aa o;~z__ 1: ~t ~+o, + + ~ -  + ~ P -  +~+o +) ~+'+ (+#? + %0 - +o, +%9 (lO) 
kT kT 1' 
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where O~i : O~ i -  0~o i ,  and l~ {~ i s  the  number of ne ighbors  adjacentr., to  the  p a r t i c l e  ~i 

l o=~ted  at  node i of  type  ~ in  phase  s t a t e  ~ ' .  We ~ow take ~ n  : * ,~ .  Then 

~ J ~  ~,~ ~,~ z0~J ~ ~J~(~0~ + ~0~0 ~ -  2 ~ ) l ~ r ]  " ' = i ~  - - l l  - -  - -  
W~i0 ~j0 

i s  de termined by only  one energy parameter  -- the  hea t  of mixing of  the  l i q u i d  phase .  I f  the  
close order of the component distribution in the melt is insignificant, the frequency of dif- 
fusion transitions can be considered independent of the number of adjacent neighbors and 

=i0 
w~~ = w ~0  = w ~  ~ l ~  

f o r  any p a i r  i ,  j of  l i q u i d  nodes .  We w i l l  a l so  assume Eq. (11) to  be v a l i d  in  the  g en e ra l  
case ,  r e l y i n g  on e x p e r i m e n t a l  d a t a ,  acco rd ing  to which the d i f f u s i o n  c o e f f i c i e n t  i s  indepen-  
dent  in  o rder  of  magnitude o f  the  type  of  sys tem,  compris ing ~10 -5 cm2/sec. I t  can he hoped 
t h a t  the  approxLraation (11) w i l l  have no s i g n i f i c a n t  e f f e c t  on the  q u a n t i t a t i v e  r e s u l t s  of  
the  c a l c u l a t i o n s .  The r a t i o  of  the  t r a n s i t i o n  f r e q u e n c i e s  (9) from one phase to  the  o t h e r  
with consideration of ~ B, :~oo has the form 

~t ~ i  ~-r ~i ~i~ e ~ = e x p  -- eO~i 
~ kT ' (12) 

T{ZiO 

r = ~o ~ - ~i~. 

As in [i, 2], to find the e x p l i c i t  form of W~, W~o we assume that the activation energy for 
uniting a liquid particle to the crystal is independent of the local configuration of compo- 
nent distribution. Then, if the type of particle being joined is known, 

W~o = W~o = r -- ~ = Wxo 613) 

(where m is the frequency factor). Thus, Eqs. (11)-(13) specify all the frequency character- 
istics of elementary processes in the system in thermodynamic equilibrium. For the future we 
will assume that these relationships maintain their form for nonequilibrium systems. 

We will solve Eq. (i) in the two-particle approximation of the distribution function, 
which can be related to the close-order parameters. To do this, we consider the concentra- 

tion of solid--solid c~:(i, k), solid--liquid coog~(i, k), and liquid--liquid coo(i, k) closest- 
neighbor bonds in the lattice (v, y = a, 8), 

r  (L k) = ~ ~ ~ p  (g, t) = _ ~ _ ~l~l~,~p(~) (~, ~ ;  ~ ,  ~ ;  t), 
g ~ , ~ , ~ , ~  

c~  if, k) : ~ (i  - ~ )  ~ # ~ p ~ )  (~, ~ ;  ~ ,  ~ ;  t), 

c~(~, k) = ~ (l - -  ~l~) (l --  ~1~) ~i~h~P(2)  (~, ~1~; ~h, ~h; t). 

Here 0 (a) (�9 ~i ;  ~k' ~k; t )  i s  t he  t w o - p a r t i c l e  d i s t r i b u t i o n  f u n c t i o n ,  

~,V,~,~' 

Multiplying the left and right sides of Eq. (i) by ~i~k~Eig~ky and s,m~ing over all configur- 
ations, we obtain 

dt 
_ _  ~ T/TT~'~ r , ( 7 ) / ~  

(14) 
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Similarly 

= ~ v v l _ % ~ i v  (~,~h; 

+ (1 - n j )  - (1 - Cj, O]  + 

.:,~k ^(7) [2 ) 

= ~ 6r ~ ( 2 ~ -  i )  (t - ~ )  w a - ~ m i p  ~ ,  ~ ;  t) + 

--.r _(7),~ (15)  
-1- ~ 6t~vS~a v (i - -  ~ )  (2qu - -  i )  w l _ n a , % p  t ~ ,  rl~; t) --}- 

W~f%^(s) 

j~k, j§ 

W t ~ %  ~) (~:~, ~, ~1~; ~;  + ( 8 ~  - -  o .. ~) ~1~) 

where pi~)(~i, hi; t)is the seven-particle distribution function with central point i and Z 

adjacent neighbors j ~i; P~a)r ~i; ~k, ~k; ~j, ~j; t) is the three-particle distribution 
function, while the point j here is a closest neighbor to the point i if j # k and to the 
point k if j # i. We introduce the two-particle distrubtion function approximation in the 
superposition approximation: 

p(2) (~, .%; ~, t) 
O <~)(~, n~; t) p<" ~ t) II  ~ ;  = (~,  'q~; . , ] ~ i, ~=~ p(t) (~, n~; t) 

p(2) (~,  n~; ~ ,  n~; t) 
p ( ~ ) ( ~ , ~ ; ~ , ~ ; ~ , q ~ ; t )  =p(~:)(~, ~ ; ~ , ~ ; t )  p<~)(~,~;t)  , ] ~ ,  (17) 

p(~) (~, ~1~; ~t,, ~ ;  t) 
P(~> (~' ~ ;  ~ '  ~ ;  ~'  ~ ;  t) = P(~) (~'  ~ ;  ~ '  ~ ;  t) p(l) (~,  ~ ;  t) , ] ~ k .  

Substituting gqs. (14)-(16)into Eq. (17) and summing over all configurations, we obtain a 
system of equations describing the evolution of the close-order, and thus the distant-order, 

parameters e~ = ~ ~v with time. 
?,~, 

For simplicity, we will consider the crystallization of a binary melt into a simple 
cubic lattice (~ = 6). A cross section of the crystal-melt system is shown in Fig. 1 ~ is 
the crystallization rate). We divide the interphase zone and adjacent volumes of solid and 
liquid phases into atomic layers parallel to the xy plane. The z axis corresponds to the 
growth direction of the face (001), and whole number coordinates along the z axis correspond 
to the atomic layers. Each layer will be characterized by a concentration of solid--solid 
vy vy . . , ~y 
cZz(z), solid--liquid czo(z), and l~quid--l~quid coo(z) bonds of adjacent neighbors of all types 

vy 
in the xy plane and also by concentrations of solid--solid c~(z, z- i), solid--liquid c~x(z, 

vy 
z -- I), and liquid--liquid coo(z, z -- i) bonds along the growth direction. Let xyz he inte- 
gral coordinates defining the position of a lattice point in a layer; ~_xyz = 1 if at the point 
with coordinates xy in layer z a solid atom exists, while ~xyz = 0 if a liquid particle is 
located there. We will limit our consideration to system states corresponding to interphase 
boundary configurations without impendency. This means that in the atomic column along the 
direction of the growth rate v only one solid atom has a neighbor in the liquid state beneath 
it. With consideration of this, 

W ~  ~ = Wi~a]xy.~_I ( i  - -  ~lxu,). ( 1 8 )  

Since diffusion is considered only in the melt, 

wt~  = ( ~ , ~ s t ~  + 8to~t ,~  ) (1 - ~q,) ( i  - ~ , )  w ~ .  
(19) 
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Thus, the problem reduces to obtaining, with the consideration of Eqs. 14)-(19), a system 

of 28 finite-difference equations in the 24 adjacent neighbor bond concentrations c 9Y, (z) 
Nn 

vY (z z -- i) and the four particle concentrations c~(z) of which only 14 of the variables Cn~t , 
~ BB 

are linearly independent. We chose as the independent variables C:1(z, z -- i), c~(z, z - -  

1 ) ,  c o x ( Z ,  Z -  1 ) ,  c o x ( Z ,  z - - 1 ) ,  C o o ( z ,  z - - 1 ) ,  C., tx(z),  c : . t ( Z ) ,  c x t ( Z ) ,  c o s ( z ) ,  C o x ( z ) ,  

~ ~8 ~ c~(z) Averaging in Eqs. (9)-(11) in the two-particle approximation c o o ( Z ) ,  c o o ( Z ) ,  c x ( z ) ,  
of the distribution function, we have 

dcn.. (z, z - -  t) , 'dt  = [C~o'~ (z + 1, z) Q~v (z, z - 1) Q~. (z) - 

- -  c0Wt (z, z - -  t ) ]  fin, t (~,~o - -  ~n~,n , )  W[0 - -  {c01W (z, z - -  t )  Q~, (z - 1, z - 2) Q$ • 

x (z 1) .v - ~o, (~ - ~ , ~  - 2)[~o~(~ - 9 ] - ' }  x - -  coo (z, z - t )  vs 

-- -- C TM ~ Z) x %~ (~.~ ~ . o ~ )  W~o + [ ~ .  (~, .- ~) [c~ (~)]-t [ , .  (. + ~, + 

+ 2c,"~,~ (z)] - -  c.~."v (z. z - -  l )  [c~ (z)] -~ [ c ~  (z + l ,  z) + 2e~,~ (z)]} 6. 0 (6wo + 

+ ~ . 0  (i - ~ )  w ~  § { ~ ,  (,, ~ - ~) [~.  (* - ~)1-'  [~.~,. (* - a, * - 2) + 

-5 2c,~Yn, (z -- l)] w _ _ _ - -  c~., (z, z - -  i )  [c~. (z l ) ]  - t  [c~,% (z - -  l ,  z - -  2) -5 2c~?~. (z i)]} 8~o8,Vo ( l  8~v) W~; ( 2 0 )  

" [()( : ) l  [(:,)()] [ ( ) ( ) ]  &nn' (z) "v v v y 

at ---- ~ rl , , "-I- ~ ~1 ' ~ ~ ' rl' = 
vs 

- q~  (z) [~ (z) ~ . . o h  + 

+ c ~  (z) 6n'i exp ( - -  ffPvvlkT) f,] W[o -5 {c~.n (z) [4c~ (z)]- i  X 

x [3c,~ (z) + 2 c ~  (z, z - -  1) + 2 e ~  (z + l ,  z)] [26.,t  + (4 - -  3~v~) ~n.o] - -  

- -  cn..w (z) [2c~ ( z ) ] - I  [ 3 c ~  (z) -5  2 c ~  (z, z - -  i )  qf2.cn"~ (z -5  i ,  ~)l ~.o ( ~ . o  + ~.,~)1 (~ - ~ .v)  1 4 ~ ,  ( 2 1 )  

where 

The remaining 

.& = 6~t (2 - -  6~ )  2 -~ - -  6~o; /~ = 6,1~ (1 + 6 ~ )  - -  8~o; 

Qvv (z, z - t) = c]'T (z, z - -  i) [c[ (z)] - i  exp (- -  c~v~/kT -5 Or); 
Qv (z, z - 1) = Qv= (z, z - t) + Qv~ (z, z - 1); 

Qv (z) = c~l' (z) [c[ (z)]-I  exp ( -  r ) -5 

--r c~1 (z) [2c?~ (z ) ] - '  exp ( - -  O~/kT) -5 c~Io (z) [2c[ ( z ) ] - ' ;  

~,. ~ o~ ~ ~ ~ c o ~ = c o n + C  ; c l ~ = c l ~ + c  .~ 

concentrations are found from the balance conditions 

c~ (z) ~ (z + t ,  z) + c~' (z + 1, z) + cy[ (z + t ,  z) C01 

= c ~  (z, z - -  I) + c]'~ (z, z - -  t )  = c[[ (z) + [c[~ (z) + c[0 t (z)] /2 (%, 4= v), 

= = coo (z, z - t )  + co, (z, z - i )  + 4'~ (z, z - -  i )  = 

---- c~[ (z) + [e~o ~ (z) -5 c~? (z) -5 c~'~ (z)]/2.  
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The velocity of the interphase boundary motion is defined in the form 

R = E E [dcy 
z ~  

Figure 2 shows a full section of the solid phase in the two-phase zone c~(z) = c~(z) + 

~ ~ C~(Z)J over c~(z), and distributions of the concentrations c~(z) and Co(Z)/[co(z) + atomic 

layers for an ~ component concentration in the core of the melt co(Z) Iz= ~ = 0.25. The thick- 
ness of the diffusion layer for the model example considered ~ = 4. This value was calculated 

from the atomic layer in which c1(z)+ c (z) = 0. The results were obtained for a eutectic- 
type binary system [i, 2] with following parameter values: #~ = 300 cal/mole; r = 200 
cal/mole; ~88 = 1500 cal/mole; @a = i; 88 = 3; and W~ = W1o. The results indicate the strong 
dependence of interphase zone structure, concentration gradient in the melt, and crystalliza- 
tion rate on the value of the diffusion coefficient W~. 

An interesting peculiarity in the dynamics of solid-phase structure formation should be 
noted. In the curve c~(z) (Fig. 2) there is a nonmonotonic dependence on z, corresponding 
to the fact that upon crystallization of some fixed atomic layer the rate of its filling by 

particles is positive when c~(a) + c~(z) ~ 0.7 and negative when the solid phase section 
exceeds the value 0.7. This nonmonotonic effect increases with increase in the component 
concentration discontinuity on the kinetic phase diagram. 

In the one-particle approximation of the distribution function there remain as functions 

to be found only the component concentrations c ~) for which ~c~(z)=!. In [i, ~ it was 

shown t h a t  the  s i n g l e - p a r t i c l e  approximat ion  may be used f o r  r e g u l a r  mel t s  ~3, 43, f o r  whick 
c lose  o rder  in  the  s o l i d  phases may be n e g l e c t e d .  

Thus, the  system of  equa t ions  (20)-(22)  o f f e r s  a s o l u t i o n  of  the  problem of a d i f f u s i o n  
boundary l a y e r  wi thou t  a d d i t i o n a l  a r t i f i c i a l  assumptions  as to  the form of boundary c o n d i t i o n s  
on the  i n t e r p h a s e  boundary i n h e r e n t  to  the  S t e f an  problem. The approach proposed not  on ly  
permits analysis of the dependence of concentration gradients in the melt on growth rate, but 
allows description in a self-consistent manner of the kinetics of crystalline-phase structure 
formation. Far from the interphase boundary, where c~(z) + c~(z) E 0, in the single-particle 
approximation of the distribution function, Eqs. (20)-(22) in the central difference approxi- 
mate the conventional diffusion equation in the melt, 

d~ (~) 
dt = [c~ (z + 1) + c~ (z-- l) -- 2c~ (z)]W~. 

The analytic description presented in the present study may also be used for the case of 
crystallization from solutions. Computer calculations were performed by G. T. Gidrikhson. 

i. 

2. 

3. 
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